Propellanes 8. Some Bent Cyclopropyl Cations--Are They Partially-Opened?¹

Philip Warner,^{*2} Shih-Lai Lu and Suae-Chen Chang Department of Chemistry, Iowa State University, Ames, Iowa 50011

(Received in USA 6 March 1978; received in UK for publication 3 April 1978)

Solvolyses of simple cyclopropyl systems have been extensively studied.³ The "partially-opened" cyclopropyl cation, with charge shared by all 3 carbons of the cyclopropane ring, was suggested by Schöllkopf, <u>et al.</u>,⁴ to explain the solvolysis of, among others, several <u>exo-7</u>-norcaryl derivatives. Some data⁵ have since appeared in support of this postulate, and the accompanying theoretical⁶ expectation of non-planarity in such an ion; results for some tertiary systems, ^{5e,f,h} including direct observation, ⁵ⁱ seem especially important. However, a somewhat confused picture persists for some secondary cyclopropyl systems, including the possible role of frontside SN2 displacements.⁷ We now report kinetic and product studies on constrained cyclopropyl systems^{5a,b,d,h,i,7,8} which bolster the "partially-opened" ion concept.

The compounds utilized were either known $(1-2, ^{8a} , ^{9b} , 4-6^{9a})$, or made by triflation of 7-OH^{9a} (7) and 8-OH^{9a} (8). The observed buffered acetolysis rates are collected in Table I. The products from 1 and 2 have been reported;⁸¹ they arise mainly from ring opening. Contrariwise, the products from 3, 4, 7 and 8 are solely (within pmr detection limits) those of ring and stereochemical retention--namely 9 (>90% pmr yield, 75% isolated), 10 (>90% pmr yield, 76% isolated), 11 (44% isolated yield¹⁰) and 12 (77% pmr yield), respectively. This marks the first secondary cyclopropyl systems which give only complete retention upon solvolysis.¹²

The acetolysis rate of 5 was estimated by dividing the rate for 7 by the 13/14 rate ratio,^{12b} wherefrom it was concluded that 3 ionizes ca. $10^{6\cdot6}$ times faster than its epimer (5) at 125°. For comparison, the 16/18 rate ratio [obtained by multiplying the 13/17 rate ratio^{5g} by the 15/14 ratio^{12b} (the 18/17 ratio is 1^{12b})] should be ca. $10^{4\cdot8}$ (HOAC, 200°). What can cause such a large ($10^{6\cdot6}$) rate change between epimers 3 and 5 (and similarly 4 and 6)? Certainly not steric or strain factors.^{5d,9b} The only possibility is electronic effects--namely one epimer (3) enjoys an enhanced ionization rate due to $\sigma_{1,6}$ -bond participation leading to a delocalized ("partially-opened") cyclopropyl cation (really a monohomocyclopropenium ion^{51,13}); the ionization of 5 may or may not receive σ assistance (see below). The inductive effect of the double bond¹⁴ in 2 and 4 also supports the generation of partially-opened ions;¹⁵ the double bonds don't participate in the positive fashion observed for that of 26.50

Although the kinetics for 1-4 appear to be first order (only a small ionic strength effect upon varying [OAc]), one might worry about solvent displacement. While the solvolyses may involve ion pairs only, we cannot understand the large epimeric rate differences in terms of frontside S_N^2 -like processes in both epimers (<u>i.e.</u>, <u>3</u> and <u>7</u> or <u>4</u> and <u>8</u>). However, Yamaguchi, et al., 7 have proposed frontside S_N^2 displacements to explain the stereoretentive conversions of 19 to 20 and 21 to 22 (acetone, Et_4NOAc , rt). We therefore treated triflate 8 with Et4NBr (95% ag. acetone, 100°, 7h) and nBu₄NOAc (acetone, 80°, 1/4h); no reaction was observed in either case. Furthermore, bromides 4 and 6 were each totally inert to the aforementioned conditions. Since these substrates are stereochemically similar to 21, we conclude that the reported reactions of 19 and 21 are not frontside S_N^2 displacements, but rather solvolyses.

As mentioned, the products from $\mathcal Z$ and $\mathcal 4$ provide evidence for nonclassical, bent ion intermediates, in accord with theory. The products from 7 and 8 implicate bent cation intermediates, too, but their nonclassicity is questionable. The evidence accumulated by Schleyer^{12b} and Creary⁵⁰ indicate virtually no σ -participation for the ionization of 17. Thus, in contrast to the partially-opened ions derived from 23 and 248h (on the basis of the nmr of 25^{51}), the ions derived from 7 and 8 may be essentially classical, bent cyclopropyl cations (e.g., 27).¹⁶

1,	X=Y=Br
3,	X=Br, Y=H
3,	X=H, Y=Br
7,	X=H, Y=OTf
9,	X=OAc, Y=H
<u>I</u> 1,	X=H, Y=OAc

C	L	>
2458102	X=Y=H X=Br, X=H, X=H, X=OAC X=H,	Br Y=H Y=Br Y=OTi 2, Y=H Y=OA0

•	X7 T TOT
,	X=Br, Y=H
,	X=H, Y=Br
,	X=H, Y=OTf
),	X=OAc, Y=H
5	X=H, Y=OAc

- 3, X=OTf, R=H 4, X=Br, R=H , X=Br, R=Me , X=OTf, R=Me
- 17, X=OTf, R=H 18, X=OTf, R=Me

Table I. Buffered ^a Acetolysis Rates ^b at 125 ± 1°.									
Cpd. ^C	k _t x 10 ⁶ (sec ⁻¹)	k _{rel}	<u>k</u> rel	<u>k</u> rel	krel				
l	1800	25.9							
2	69.4	(1.0)							
3	118		20.1		3.9 x 10 ⁶				
4	5.86		(1.0)						
∑ 2	no solvolysis (calcd ^d : 3 x 10 ⁻⁵)				(1,0)				
6	no solvolysis				(1.0)				
Z	47.5			5.5					
8	8.70			(1.0)					

(a) for [NaOAc] = 0.012M; (b) the errors in k_t are $\leq 10\%$; (c) [Cpd.] varied from 0.004 to 0.012M; (d) see text for details.

References and Footnotes

- 1. We thank the donors of the Petroleum Research Fund, administered by the American Chemical Society, for partial support of this work. Fellow of the Alfred P. Sloan Foundation, 1976-78.
- 2.
- 3. 4.
- Fellow of the Alfred P. Sloan Foundation, 1976-78.
 W. Sliwinski, T. Su and P. Schleyer, J. Am. Chem. Soc., 94, 133 (1972).
 (a) U. Schöllkopf, K. Fellenberger, M. Patsch, F. Schleyer, T. Su and G. W. van Dine, Tetrahedron Lett., 3639 (1967); (b) U. Schöllkopf, Ang. Chem. Int. Ed., 7, 588 (1958).
 (a) D. B. Ledlie and J. Knetzer, Tetrahedron Lett., 5021 (1973); (b) D. B. Ledlie, J. Knetzer and A. Gitterman, J. Org. Chem., 39, 708 (1974); (c) X. Creary, ibid., 40, 3326 (1975); (d) D. B. Ledlie, T. Swan, J. Pile and L. Bowers, ibid., 41, 419 (1976); (e) X. Creary, ibid., 41, 3740 (1976); (g) X. Creary, J. Am. Chem. Soc., 98, 6608 (1970); (h) D. B. Ledlie, W. Barber and F. Switzer, Tetrahedron Lett., 607 (1977); (i) G. Olah, G. Liang, D. B. Ledlie and M. Costopoulos, J. Am. Chem. Soc., 99, 4196 (1977). 5.

- 6. L. Radom, P. Hariharan, J. Pople and P. Schleyer, ibid., 95, 6531 (1973) and references therein.
- 7. H. Yamaguchi, K. Kawada, T. Okamoto, E. Egert, H. Lindner, M. Braun, R. Dammann, M. Liesner, H. Neumann and D. Seebach, Chem. Ber., 109, 1589 (1976).
- (a) C. B. Reese and M. Stebles, <u>Chem. Comm.</u>, 1231 (1972); (b) C. B. Reese and M. Stebles, <u>Tetrahedron Lett.</u>, 4427 (1972); (c) D. B. Ledlie, <u>J. Org. Chem.</u>, <u>37</u>, 1439 (1972); (d) P. Warner, R. LaRose, C. Lee and J. Clardy, <u>J. Am. Chem. Soc.</u>, 94, 7607 (1972); (e) P. Warner, J. Fayos and J. Clardy, <u>Tetrahedron Lett.</u>, 4473 (1973); (f) P. Warner, S. Lu, E. Myers, <u>P. de Haven and R. A. Jacobson</u>, <u>ibid.</u>, 4449 (1975); (g) P. Warner and S. Lu, J. Am. <u>Chem. Soc.</u>, 97, 2536 (1975); (h) P. Warner, R. LaRose, C. Lee and J. Clardy, <u>ibid.</u>, 97, 5507 (1975); (i) C. B. Reese and A. Risius. Tetrahedron Lett. 8. 2536 (1975); (h) P. Warner, R. LaRose, C. Lee and J. Clardy, ibid., 97, 5507 (1975); (i) C. B. Reese and A. Risius, <u>Tetrahedron Lett.</u>, 4847 (1976); (j) P. Warner and S. Lu, J. <u>Am. Chem. Soc.</u>, 98, 5752 (1976); (k) P. Warner, R. F. Palmer and S. Lu, <u>ibid.</u>, 99, 3773 (1977); (l) P. Warner, S. Lu, E. Myers, P. DeHaven and R. A. Jacobson, <u>ibid.</u>, 99, 5102 (1977). (a) P. Warner and S. Lu, J. <u>Org. Chem.</u>, 41, 1459 (1976); (b) P. Warner and S. Lu, <u>Tetrahedron Lett.</u>, 4665 (1976). The yield of 11 is low due to the formation of bicyclo[4.3.0]nonane-1-carboxaldehyde (47%), which we guess came from ring opening of <u>7</u>-OH (H₂O in the HOAC), but not from S-O cleavage of <u>7</u>.¹¹ T. Su. W. Sliwinski and P. Schleyer, J. Am. Chem. Soc., 91, 5386 (1969)
- 9.
- 10.
- (n) Su, W. Sliwinski and P. Schlever, J. Am. Chem. Soc., 91, 5386 (1969)
 (a) 14,⁴ 17,¹²b and dihydro-26⁵C all afford some ring opened products;
 (b) T. M. Su, Ph.D. Thesis, Princeton U., 1970.
 P. Warner in "Topics in Nonbenzenoid Aromatic Chemistry, Vol. II," T. 11. 12.
- 13. Nozoe, R. Breslow, K. Hafner, S. Ito and I. Murata, eds., Hirokawa Publ. Co. (Tokyo), 283 (1977).
- 14. For some appropriate models, see (a) J. A. Berson, D. Donald and W. Libbey, J. Am. Chem. Soc., 91, 5580 (1969); (b) S. Winstein and J. Sonnenberg, ibid., 87, 3235 (1961); (c) P. D. Bartlett and M. Rice, J. Org. Chem., 28, 3351 (1963). Ledlie^{5a}, b,d has drawn similar conclusions from inductive effects on
- 15. the solvolyses of some cyclopropyl bromides induced by excess Ag ion. But since these measure a composite of processes involving Ag-olefin complexes,^{8e} conclusions regarding partially-opened ions must be tenuous.
- The rate effects seen (-10^6) are about what Brown¹⁷ estimates for the 16. magnitude of anchimeric assistance in the solvolysis of the parent secondary cyclopropyl system.
- 17. H. C. Brown, C. G. Rao and M. Ravindranathan, J. Am. Chem. Soc., 99, 7663 (1977).